کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408935 679047 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the stability and bias–variance analysis of sparse SVMs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
On the stability and bias–variance analysis of sparse SVMs
چکیده انگلیسی

Stability and bias–variance analysis are two powerful tools to better understand learning algorithms. We use these tools to analyze a class of support vector machines (SVMs) that try to reduce classifier complexity. The motivation for doing this is to compare the original and modified SVMs on two behavioral dimensions (a) stability and (b) learning behavior. Our preliminary experimental results show that (i) the class of algorithms which reduce classifier complexity by reducing the number of support vectors (SVs) are potentially unstable and (ii) the learning behavior is quite similar to the original SVMs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 1–3, December 2008, Pages 659–663
نویسندگان
, ,