کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408935 | 679047 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the stability and bias–variance analysis of sparse SVMs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Stability and bias–variance analysis are two powerful tools to better understand learning algorithms. We use these tools to analyze a class of support vector machines (SVMs) that try to reduce classifier complexity. The motivation for doing this is to compare the original and modified SVMs on two behavioral dimensions (a) stability and (b) learning behavior. Our preliminary experimental results show that (i) the class of algorithms which reduce classifier complexity by reducing the number of support vectors (SVs) are potentially unstable and (ii) the learning behavior is quite similar to the original SVMs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 1–3, December 2008, Pages 659–663
Journal: Neurocomputing - Volume 72, Issues 1–3, December 2008, Pages 659–663
نویسندگان
V. Vijaya Saradhi, Harish Karnick,