کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409065 679053 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Class-switching neural network ensembles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Class-switching neural network ensembles
چکیده انگلیسی

This article investigates the properties of class-switching ensembles composed of neural networks and compares them to class-switching ensembles of decision trees and to standard ensemble learning methods, such as bagging and boosting. In a class-switching ensemble, each learner is constructed using a modified version of the training data. This modification consists in switching the class labels of a fraction of training examples that are selected at random from the original training set. Experiments on 20 benchmark classification problems, including real-world and synthetic data, show that class-switching ensembles composed of neural networks can obtain significant improvements in the generalization accuracy over single neural networks and bagging and boosting ensembles. Furthermore, it is possible to build medium-sized ensembles (≈200≈200 networks) whose classification performance is comparable to larger class-switching ensembles (≈1000≈1000 learners) of unpruned decision trees.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 13–15, August 2008, Pages 2521–2528
نویسندگان
, , , ,