کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409194 679058 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smooth approximation method for non-smooth empirical risk minimization based distance metric learning
ترجمه فارسی عنوان
روش تقریبی صاف برای یادگیری متریک فاصله مبتنی بر به حداقل رساندن خطر ناکارآمد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Distance metric learning (DML) has become a very active research field in recent years. Bian and Tao (IEEE Trans. Neural Netw. Learn. Syst. 23(8) (2012) 1194–1205) presented a constrained empirical risk minimization (ERM) framework for DML. In this paper, we utilize smooth approximation method to make their algorithm applicable to the non-differentiable hinge loss function. We show that the objective function with hinge loss is equivalent to a non-smooth min–max representation, from which an approximate objective function is derived. Compared to the original objective function, the approximate one becomes differentiable with Lipschitz-continuous gradient. Consequently, Nesterov's optimal first-order method can be directly used. Finally, the effectiveness of our method is evaluated on various UCI datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 127, 15 March 2014, Pages 135–143
نویسندگان
, ,