کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409343 679068 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time series prediction of the CATS benchmark using Fourier bandpass filters and competitive associative nets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Time series prediction of the CATS benchmark using Fourier bandpass filters and competitive associative nets
چکیده انگلیسی

An approach to time series prediction of the CATS benchmark (for competition on artificial time series) is presented, where we use Fourier bandpass filters and competitive associative nets (CAN2s). Since one of the difficulties of this prediction is that the given time series does not seem to involve sufficient number of data for obtaining the underlying dynamics of the time series to reproduce low frequency components, we apply the CAN2 only for learning high frequency components extracted via Fourier bandpass filters with trial parameter values of the upper and lower cutoff frequencies and the missing last value of the given time series. Supposing that the optimal values among the trial values will give the best prediction performance for high frequency components, we can identify such optimal values via a certain reasonable validation method, with which we predict the missing high frequency components, and then we obtain the missing data to be predicted via adding high and low frequency components.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 13–15, August 2007, Pages 2354–2362
نویسندگان
, , ,