کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409348 679068 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting the CATS benchmark with the Double Vector Quantization method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Forecasting the CATS benchmark with the Double Vector Quantization method
چکیده انگلیسی

The Double Vector Quantization (DVQ) method, a long-term forecasting method based on the self-organizing maps algorithm, has been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis experimental results using the DVQ method are presented and discussed. As one of the features of the DVQ method is its ability to predict scalars as well as vectors of values, the number of iterative predictions needed to reach the prediction horizon is further observed. The method stability for the long term allows obtaining reliable values for a rather long-term forecasting horizon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 13–15, August 2007, Pages 2400–2409
نویسندگان
, , , ,