کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409409 679069 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust tracking via online Max-Margin structural learning with approximate sparse intersection kernel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Robust tracking via online Max-Margin structural learning with approximate sparse intersection kernel
چکیده انگلیسی


• A new sparse HOG-based model to represent the tracked object in high-dimensional feature space.
• We propose an optimisation method by extending Pegasos to the structural output with sparse intersection kernel in an online setting.
• Based on new discriminative appearance models, we build a tracking algorithm using a Bayesian state inference framework.

In this paper, we propose a robust visual tracking algorithm using online Max-Margin structural learning with sparse intersection kernel approximations to address the appearance variation, such as pose and scale variations, illumination changes, and occlusion. In the proposed tracking framework, we introduce a new sparse approximate HOG-based appearance model to represent the tracked object in high-dimensional feature space, which is efficient for measurement of non-linear intersection kernel. We then propose a optimisation method by extending Pegasos to the structural output with sparse intersection kernel in an online setting. Based on the new discriminative appearance models, we build a tracking algorithm using a Bayesian state inference framework to update the dynamic motion of object. The qualitative and quantitative experimental evaluations on 14 challenging video sequences demonstrate that the proposed tracking algorithm outperforms state-of-the-art trackers. We also show the low time complexity of the proposed tracker.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 157, 1 June 2015, Pages 344–355
نویسندگان
, , ,