کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409410 679069 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised document summarization from data reconstruction perspective
ترجمه فارسی عنوان
خلاصه سازی سند نگهداری نشده از دیدگاه بازسازی داده ها
کلمات کلیدی
خلاصه سازی سند، بازسازی داده ها، هسته تطبیقی ​​مانیفولد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Due to its wide applications in information retrieval, document summarization is attracting increasing attention in natural language processing. A large body of recent literature has implemented document summarization by extracting sentences that cover the main topics of a document with a minimum redundancy. In this paper, we take a different perspective from data reconstruction and propose a novel unsupervised framework named Document Summarization based on Data Reconstruction (DSDR). Specifically, our approach generates a summary which consist of those sentences that can best reconstruct the original document. To model the relationship among sentences, we firstly introduce the linear reconstruction which approximates the document by linear combinations of the selected sentences. We then extend it into the non-negative reconstruction which allows only additive, not subtractive, linear combinations. In order to handle the nonlinear cases and respect the geometrical structure of sentence space, we also extend the linear reconstruction in the manifold adaptive kernel space which incorporates the manifold structure by using graph Laplacian. Extensive experiments on summarization benchmark data sets demonstrate that our proposed framework outperform state of the art.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 157, 1 June 2015, Pages 356–366
نویسندگان
, , , , , , ,