کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
409413 | 679072 | 2006 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quasi-optimal EASI algorithm based on the Score Function Difference (SFD)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Equivariant adaptive separation via independence (EASI) is one of the most successful algorithms for blind source separation (BSS). However, the user has to choose non-linearities, and usually simple (but non-optimal) cubic polynomials are applied. In this paper, the optimal choice of these non-linearities is addressed. We show that this optimal non-linearity is the output score function difference (SFD). Contrary to simple non-linearities usually used in EASI (such as cubic polynomials), the optimal choice is neither component-wise nor fixed: it is a multivariate function which depends on the output distributions. Finally, we derive three adaptive algorithms for estimating the SFD and achieving “quasi-optimal” EASI algorithms, whose separation performance is much better than “standard” EASI and which especially converges for any sources.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 13â15, August 2006, Pages 1415-1424
Journal: Neurocomputing - Volume 69, Issues 13â15, August 2006, Pages 1415-1424
نویسندگان
Samareh Samadi, Massoud Babaie-Zadeh, Christian Jutten,