کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409437 679072 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Training sparse MS-SVR with an expectation-maximization algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Training sparse MS-SVR with an expectation-maximization algorithm
چکیده انگلیسی

The solution of multi-scale support vector regression (MS-SVR) with the quadratic loss function can be obtained by solving a time-consuming quadratic programming (QP) problem and a post-processing. This paper adapts an expectation-maximization (EM) algorithm based on two 2-level hierarchical-Bayes models, which implement the l1l1-norm and the l0l0-norm regularization term asymptotically, to fast train MS-SVR. Experimental results illuminate that the EM algorithm is faster than the QP algorithm for large data sets, the l0l0-norm regularization term promotes a far sparser solution than the l1l1-norm, and the good performance of MS-SVR should be attributed to the multi-scale kernels and the regularization terms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 13–15, August 2006, Pages 1659–1664
نویسندگان
, , ,