کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
409454 | 679072 | 2006 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An optimal kernel feature extractor and its application to EEG signal classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An optimal nonlinear feature extractor for extracting energy features under two different kinds of patterns is proposed. It carries out the simultaneous diagonalization of two signal covariance matrices in a high-dimensional kernel transformed space, and thus promises to find features which are more discriminant, especially when the original data have nonlinear structures. Two operations, whitening transform and projection transform, are involved in kernel spaces. The mechanism of the feature extractor and its effectivity are shown with simulation data and the classification task of real electroencephalographic (EEG) signals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 13–15, August 2006, Pages 1743–1748
Journal: Neurocomputing - Volume 69, Issues 13–15, August 2006, Pages 1743–1748
نویسندگان
Shiliang Sun, Changshui Zhang,