کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409528 679077 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online stability of backpropagation–decorrelation recurrent learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Online stability of backpropagation–decorrelation recurrent learning
چکیده انگلیسی

We provide a stability analysis based on nonlinear feedback theory for the recently introduced backpropagation–decorrelation (BPDC) recurrent learning algorithm which adapts only the output weights of a possibly large network and therefore can learn in O(N)O(N). Using a small gain criterion, we derive a simple sufficient stability inequality. The condition can be monitored online to assure that the recurrent network is stable and can in principle be applied to any network adapting only the output weights. Based on these results the BPDC learning is further enhanced with an efficient online rescaling algorithm to stabilize the network while adapting. In simulations we find that this mechanism improves learning in the provably stable domain. As byproduct we show that BPDC is highly competitive on standard data sets including the recently introduced CATS benchmark data [CATS data. URL: http://www.cis.hut.fi/lendasse/competition/competition.html].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 7–9, March 2006, Pages 642–650
نویسندگان
,