کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
409532 | 679077 | 2006 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Boosting by weighting critical and erroneous samples
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Real Adaboost is a well-known and good performance boosting method used to build machine ensembles for classification. Considering that its emphasis function can be decomposed in two factors that pay separated attention to sample errors and to their proximity to the classification border, a generalized emphasis function that combines both components by means of a selectable parameter, λλ, is presented. Experiments show that simple methods of selecting λλ frequently offer better performance and smaller ensembles.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 7–9, March 2006, Pages 679–685
Journal: Neurocomputing - Volume 69, Issues 7–9, March 2006, Pages 679–685
نویسندگان
Vanessa Gómez-Verdejo, Manuel Ortega-Moral, Jerónimo Arenas-García, Aníbal R. Figueiras-Vidal,