کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409621 679080 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows
ترجمه فارسی عنوان
بهینه سازی فاکتورهای یادگیری جامع یادگیری و کاربرد آن در مسائل مربوط به مسیریابی خودرو با پنجره های زمان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper proposes a variant of the bacterial foraging optimization (BFO) algorithm with time-varying chemotaxis step length and comprehensive learning strategy which we call adaptive comprehensive learning bacterial foraging optimization (ALCBFO). An adaptive non-linearly decreasing modulation model is used to keep a well balance between the exploration and exploitation of the proposed algorithm. The comprehensive learning mechanism maintains the diversity of the bacterial population and thus alleviates the premature convergence. Compared with the classical GA, PSO, the original BFO and two improved BFO (BFO-LDC and BFO-NDC) algorithm, the proposed ACLBFO shows significantly better performance in solving multimodal problems. We also assess the performance of the ACLBFO method on vehicle routing problem with time windows (VRPTW). Compared with three other BFO algorithms, the proposed algorithm is superior and confirms its potential to solve vehicle routing problem with time windows (VRPTW).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 3, 3 March 2015, Pages 1208–1215
نویسندگان
, , ,