کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409628 679080 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Set-label modeling and deep metric learning on person re-identification
ترجمه فارسی عنوان
مدل سازی مجموعه ای و یادگیری متریک عمیق در شناسایی افراد
کلمات کلیدی
شناسایی فرد، اطلاعات متقابل، یادگیری متریک، یادگیری عمیق، تجزیه و تحلیل جزء محله
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Person re-identification aims at matching individuals across multiple non-overlapping adjacent cameras. By condensing multiple gallery images of a person as a whole, we propose a novel method named Set-Label Model (SLM) to improve the performance of person re-identification under the multi-shot setting. Moreover, we utilize mutual-information to measure the relevance between query image and gallery sets. To decrease the computational complexity, we apply a Naive–Bayes Nearest-Neighbor algorithm to approximate the mutual-information value. To overcome the limitations of traditional linear metric learning, we further develop a deep non-linear metric learning (DeepML) approach based on Neighborhood Component Analysis and Deep Belief Network. To evaluate the effectiveness of our proposed approaches, SLM and DeepML, we have carried out extensive experiments on two challenging datasets i-LIDS and ETHZ. The experimental results demonstrate that the proposed methods can obtain better performances compared with the state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 3, 3 March 2015, Pages 1283–1292
نویسندگان
, , , , , ,