کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409671 679083 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning orthogonal projections for Isomap
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning orthogonal projections for Isomap
چکیده انگلیسی

We propose a dimensionality reduction technique in this paper, named Orthogonal Isometric Projection (OIP). In contrast with Isomap, which learns the low-dimension embedding, and solves problem under the classic Multidimensional Scaling (MDS) framework, we consider an explicit linear projection by capturing the geodesic distance, which is able to handle new data straightforward, and leads to a standard eigenvalue problem. We consider the orthogonal projection, and analyze the properties of orthogonal projection, and demonstrate the benefits, in which Euclidean distance, and angle at each pair in high-dimensional space are equivalent to ones in low-dimension, such that both global and local geometric structure are preserved. Numerical experiments are reported to demonstrate the performance of OIP by comparing with a few competing methods over different datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 103, 1 March 2013, Pages 149–154
نویسندگان
, , , , ,