کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409675 679083 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized N-dimensional independent component analysis and its application to multiple feature selection and fusion for image classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Generalized N-dimensional independent component analysis and its application to multiple feature selection and fusion for image classification
چکیده انگلیسی

We propose a multilinear independent component analysis (ICA) framework called generalized N-dimensional ICA (GND-ICA) by extending the conventional linear ICA based on the multilinear algebra. Unlike the linear ICA that only treats one-dimensional data, the proposed GND-ICA treats N-dimensional data as a tensor without any preprocess of data vectorization. We furthermore introduce two types of GND-ICA solutions and analyze their efficiency and effectiveness. As an application, the GND-ICA can be used for multiple feature fusion and representation for color image classification. Many features extracted from a given image are constructed as a tensor. The feature tensor can be effective represented by GND-ICA. Compared with the conventional linear subspace learning methods, GND-ICA is capable of obtaining more distinctive representation for color image classification.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 103, 1 March 2013, Pages 186–197
نویسندگان
, , , ,