کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409678 679083 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artifacts removal in EEG signal using a new neural network enhanced adaptive filter
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Artifacts removal in EEG signal using a new neural network enhanced adaptive filter
چکیده انگلیسی

EEG signal is an important clinical tool for diagnosing, monitoring, and managing neurological disorders. This signal is often affected by a variety of large signal contaminations or artifacts, which reduce its clinical usefulness. In this paper, a new adaptive FLN–RBFN-based filter is proposed to cancel the three most serious contaminants, i.e. ocular, muscular and cardiac artifacts from EEG signal. The basic method used in this paper for the elimination of artifacts is adaptive noise cancellation (ANC). The results demonstrate the effectiveness of the proposed technique in extracting the desired EEG component from contaminated EEG signal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 103, 1 March 2013, Pages 222–231
نویسندگان
, ,