کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409725 679086 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective feature selection using feature vector graph for classification
ترجمه فارسی عنوان
انتخاب ویژگی موثر با استفاده از گراف بردار ویژگی برای طبقه بندی
کلمات کلیدی
انتخاب ویژگی، مدولار جامعه مستقل مربوطه، گراف بردار ویژگی. دقت طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Optimal feature subset selection is often required as a preliminary work in machine learning and data mining. The choice of feature subset determines the classification accuracy. It is a crucial aspect to construct efficient feature selection algorithm. Here, by constructing the feature vector graph, a new feature evaluation criterion based on community modularity in complex network is proposed to select the most informative features. To eliminate the relevant redundancy among features, conditional mutual information-based criterion is used to capture information about relevant independency between features, which is the amount of information they can predict about label variable, but they do not share. The most informative features with maximum relevant independency are added to the optimal subset. Integrating these two points, a method named the community modularity Q value-based feature selection (CMQFS) is put forward in this paper. Furthermore, our method based on community modularity can be certified by k-means cluster theory. We compared the proposed algorithm with other state-of-the-art methods by several experiments to indicate that CMQFS is more efficient and accurate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 1, 3 March 2015, Pages 376–389
نویسندگان
, , , , ,