کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409845 679099 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Video super-resolution with 3D adaptive normalized convolution
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Video super-resolution with 3D adaptive normalized convolution
چکیده انگلیسی

The classic multi-image-based super-resolution (SR) methods typically take global motion pattern to produce one or multiple high-resolution (HR) versions from a set of low-resolution (LR) images. However, due to the influence of aliasing and noise, it is difficult to obtain highly accurate registration with sub-pixel accuracy. Moreover, in practical applications, the global motion pattern is rarely found in the real LR inputs. In this paper, to surmount or at least reduce the aforementioned problems, we develop a novel SR framework for video sequence by extending the traditional 2-dimentional (2D) normalized convolution (NC) to 3-dimentional (3D) case. In the proposed framework, to bypass explicit motion estimation, we estimate a target pixel by taking a weighted average of pixels from its neighborhood. We further up-scale the input video sequence in temporal dimension based on the extended 3D NC and hence more video frames can be generated. Fundamental experiments demonstrate the effectiveness of the proposed SR framework both quantitatively and perceptually.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 94, 1 October 2012, Pages 140–151
نویسندگان
, , , , ,