کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409956 679109 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence
چکیده انگلیسی

In this paper, a novel neuro-optimal control scheme is proposed for unknown nonaffine nonlinear discrete-time systems by using adaptive dynamic programming (ADP) method. A neuro identifier is established by employing recurrent neural networks (RNNs) model to reconstruct the unknown system dynamics. The convergence of the identification error is proved by using the Lyapunov theory. Then based on the established RNN model, the ADP method is utilized to design the approximate optimal controller. Two neural networks (NNs) are used to implement the iterative algorithm. The convergence of the action NN error and weight estimation errors is demonstrated while considering the NN approximation errors. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 91, 15 August 2012, Pages 48–55
نویسندگان
, , , ,