کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410034 679117 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust local feature weighting hard c-means clustering algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Robust local feature weighting hard c-means clustering algorithm
چکیده انگلیسی


• Based on a non-Euclidean metric, a robust local feature weighting hard c-means (RLWHCM) clustering algorithm is presented.
• The robustness of RLWHCM is analyzed by using the location M-estimate in robust statistical theory.
• The convergence proof of RLWHCM is given.

In view of local feature weighting hard c-means (LWHCM) clustering algorithm sensitive to noise, based on a non-Euclidean metric, a robust local feature weighting hard c-means (RLWHCM) clustering algorithm is presented. RLWHCM is a natural, effective extension of LWHCM. The robustness of RLWHCM is analyzed by using the location M-estimate in robust statistical theory. The convergence proof of RLWHCM is given. Experimental results on synthetic and real-world data sets demonstrate the effectiveness of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 134, 25 June 2014, Pages 20–29
نویسندگان
, , ,