کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410037 679117 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel inverse Fisher discriminant analysis for face recognition
ترجمه فارسی عنوان
تجزیه و تحلیل محرک فیزیک معکوس هسته برای تشخیص چهره
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we present a new nonlinear feature extraction method for face recognition. The proposed method incorporates the kernel trick with inverse Fisher discriminant analysis and develops a two-phase kernel inverse Fisher discriminant analysis criterion – KPCA plus IFDA. In the proposed method, we first apply the nonlinear kernel trick to map the original face samples into an implicit feature space and then perform inverse Fisher discriminant analysis in the feature space to produce nonlinear discriminating features. In implementation, kernel IFDA seeks nonlinear discriminating features by minimizing the inverse Fisher discriminant quotient and overcome the singularity problem by projective transformation of scatter matrices. Experimental results on ORL, FERET and AR face databases demonstrate the effectiveness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 134, 25 June 2014, Pages 46–52
نویسندگان
, , ,