کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410078 679119 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Meta-cognitive Neural Network for classification problems in a sequential learning framework
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Meta-cognitive Neural Network for classification problems in a sequential learning framework
چکیده انگلیسی

In this paper, we propose a sequential learning algorithm for a neural network classifier based on human meta-cognitive learning principles. The network, referred to as Meta-cognitive Neural Network (McNN). McNN has two components, namely the cognitive component and the meta-cognitive component. A radial basis function network is the fundamental building block of the cognitive component. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. When a sample is presented at the cognitive component of McNN, the meta-cognitive component chooses the best learning strategy for the sample using estimated class label, maximum hinge error, confidence of classifier and class-wise significance. Also sample overlapping conditions are considered in growth strategy for proper initialization of new hidden neurons. The performance of McNN classifier is evaluated using a set of benchmark classification problems from the UCI machine learning repository and two practical problems, viz., the acoustic emission for signal classification and a mammogram data set for cancer classification. The statistical comparison clearly indicates the superior performance of McNN over reported results in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 81, 1 April 2012, Pages 86–96
نویسندگان
, ,