کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410086 | 679122 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Training sparse SVM on the core sets of fitting-planes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Controlling the sparsity of a classifier is a key to train SVM efficiently on very large scale problems. This paper explores building SVM classifier on the fitting-plane of each class of data, which captures the distributing trend of the corresponding class of data. The newly developed plane-fitting model can be solved by core set methods, and the SVM is trained only on the core sets which are small subsets of the original data. The computing complexity of the proposed algorithm is up bounded by Ο(1/ε)Ο(1/ε). Experimental results show that the new algorithm scales better than SVMperf and CVM/BVM, while their predicting accuracies are almost comparable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 130, 23 April 2014, Pages 20–27
Journal: Neurocomputing - Volume 130, 23 April 2014, Pages 20–27
نویسندگان
Ziqiang Li, Mingtian Zhou, LiJia Xu, Hao Lin, Haibo Pu,