کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410189 679130 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature level analysis for 3D facial expression recognition
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Feature level analysis for 3D facial expression recognition
چکیده انگلیسی

3D facial expression recognition has great potential in human computer interaction and intelligent robot systems. In this paper, we propose a two-step approach which combines both the feature selection and the feature fusion techniques to choose more comprehensive and discriminative features for 3D facial expression recognition. In the feature selection stage, we utilize a novel normalized cut-based filter (NCBF) algorithm to select the high relevant and low redundant geometrically localized features (GLF) and surface curvature features (SCF), respectively. Then in the feature fusion stage, PCA is performed on the selected GLF and SCF in order to avoid the curse-of-dimensionality challenge. Finally, the processed GLF and SCF are fused together to capture the most discriminative information in 3D expressional faces. Experiments are carried out on the BU-3DFE database, and the proposed approach outperforms the conventional methods by providing more competitive results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issues 12–13, June 2011, Pages 2135–2141
نویسندگان
, , , , ,