کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410196 679130 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning low-rank kernel matrices for constrained clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning low-rank kernel matrices for constrained clustering
چکیده انگلیسی

Constrained clustering methods (that usually use must-link and/or cannot-link constraints) have been received much attention in the last decade. Recently, kernel adaptation or kernel learning has been considered as a powerful approach for constrained clustering. However, these methods usually either allow only special forms of kernels or learn non-parametric kernel matrices and scale very poorly. Therefore, they either learn a metric that has low flexibility or are applicable only on small data sets due to their high computational complexity. In this paper, we propose a more efficient non-linear metric learning method that learns a low-rank kernel matrix from must-link and cannot-link constraints and the topological structure of data. We formulate the proposed method as a trace ratio optimization problem and learn appropriate distance metrics through finding optimal low-rank kernel matrices. We solve the proposed optimization problem much more efficiently than SDP solvers. Additionally, we show that the spectral clustering methods can be considered as a special form of low-rank kernel learning methods. Extensive experiments have demonstrated the superiority of the proposed method compared to recently introduced kernel learning methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issues 12–13, June 2011, Pages 2201–2211
نویسندگان
, ,