کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410285 679134 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
چکیده انگلیسی

A neuro-fuzzy adaptive control approach for nonlinear dynamical systems, coupled with unknown dynamics, modeling errors, and various sorts of disturbances, is proposed and used to design a wheel slip regulating controller. The implemented control structure consists of a conventional controller and a neuro-fuzzy network-based feedback controller. The former is provided both to guarantee global asymptotic stability in compact space and as an inverse reference model of the response of the controlled system. Its output is used as an error signal by an incremental learning algorithm to update the parameters of the neuro-fuzzy controller. In this way the latter is able to gradually replace the conventional controller from the control of the system. The proposed new learning algorithm makes direct use of the variable structure systems theory and establishes a sliding motion in terms of the neuro-fuzzy controller parameters, leading the learning error toward zero. In the simulations and in the experimental studies, it has been tested on the control of antilock breaking system model and the analytical claims have been justified under the existence of uncertainty and large nonzero initial errors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 11, May 2011, Pages 1883–1893
نویسندگان
, , , ,