کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410299 679134 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
PPoSOM: A new variant of PolSOM by using probabilistic assignment for multidimensional data visualization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
PPoSOM: A new variant of PolSOM by using probabilistic assignment for multidimensional data visualization
چکیده انگلیسی

A new Self-Organizing Map algorithm, called the probabilistic polar self-organizing map (PPoSOM), is proposed. PPoSOM is a new variant of PolSOM, which is constructed on 2-D polar coordinates. Two variables: radius and angle are used to reflect the data characteristics. PPoSOM, developed to enhance the visualization performance, provides more data characteristics compared with the traditional methods that use Euclidian distance as the only variable. The weight-updating rule of PPoSOM is associated with a cost function. Instead of using the hard assignment, PPoSOM employs the soft assignment that the assignment of data to neuron is based on a probabilistic function. The obtained results are compared with the conventional SOM and ViSOM. The presented results show that the proposed PPoSOM is an effective method for multidimensional data visualization. In addition, the quality measurement of mapping, synthetical cluster density (SCD) is applied and it shows PPoSOM exhibits an improved result compared with PolSOM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 11, May 2011, Pages 2018–2027
نویسندگان
, , ,