کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410333 679137 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local scaling heuristic-based regularization for pattern classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Local scaling heuristic-based regularization for pattern classification
چکیده انگلیسی


• It proposes a local scaling heuristic-based regularization (LSHR) for binary classification.
• This LSHR can reflect the intra-class compactness and inter-class separability of outputs.
• The H-LSHR and LS-LSHR classifiers with the hinge and least squares loss functions are presented based on LSHR.

In this paper, a novel regularization method called the local scaling heuristic-based regularization (LSHR) is proposed for binary classification. The idea in LSHR is to integrate the underlying knowledge inside the training points, including the intra-class and inter-class local information in training points. By combining the local scaling heuristic strategy, this LSHR uses two matrices defined on the intra-class and inter-class graphs of points to reflect the intra-class compactness and inter-class separability of outputs. Based on the LSHR method, two classifiers with the hinge and least squares loss functions, H-LSHR and LS-LSHR, are presented for binary classification. The experimental results on several artificial, UCI benchmark datasets and USPS digit datasets indicate the effectiveness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 119, 7 November 2013, Pages 264–272
نویسندگان
, ,