کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410414 | 679142 | 2013 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An input–output hidden Markov model for tree transductions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 112, 18 July 2013, Pages 34–46
Journal: Neurocomputing - Volume 112, 18 July 2013, Pages 34–46
نویسندگان
Davide Bacciu, Alessio Micheli, Alessandro Sperduti,