کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410458 679146 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
چکیده انگلیسی

The selection of hyper-parameters in support vector machines (SVM) is a key point in the training process of these models when applied to regression problems. Unfortunately, an exact method to obtain the optimal set of SVM hyper-parameters is unknown, and search algorithms are usually applied to obtain the best possible set of hyper-parameters. In general these search algorithms are implemented as grid searches, which are time consuming, so the computational cost of the SVM training process increases considerably. This paper presents a novel study of the effect of including reductions in the range of SVM hyper-parameters, in order to reduce the SVM training time, but with the minimum possible impact in its performance. The paper presents reduction in parameter C  , by considering its relation with the rest of SVM hyper-parameters (γγ and εε), through an approximation of the SVM model. On the other hand, we use some characteristics of the Gaussian kernel function and a previous result in the literature to obtain novel bounds for γγ and εε hyper-parameters. The search space reductions proposed are evaluated in different regression problems from UCI and StatLib databases. All the experiments carried out applying the popular LIBSVM solver have shown that our approach reduces the SVM training time, maintaining the SVM performance similar to when the complete range in SVM parameters is considered.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 16–18, October 2009, Pages 3683–3691
نویسندگان
, , , ,