کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410502 679147 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-homogeneous spatial filter optimization for ElectroEncephaloGram (EEG)-based motor imagery classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Non-homogeneous spatial filter optimization for ElectroEncephaloGram (EEG)-based motor imagery classification
چکیده انگلیسی

Neuronal power attenuation or enhancement in specific frequency bands over the sensorimotor cortex, called Event-Related Desynchronization (ERD) or Event-Related Synchronization (ERS), respectively, is a major phenomenon in brain activities involved in imaginary movement of body parts. However, it is known that the nature of motor imagery-related electroencephalogram (EEG) signals is non-stationary and highly variable over time and frequency. In this paper, we propose a novel method of finding a discriminative time- and frequency-dependent spatial filter, which we call ‘non-homogeneous filter.’ We adaptively select bases of spatial filters over time and frequency. By taking both temporal and spectral features of EEGs in finding a spatial filter into account it is beneficial to be able to consider non-stationarity of EEG signals. In order to consider changes of ERD/ERS patterns over the time–frequency domain, we devise a spectrally and temporally weighted classification method via statistical analysis. Our experimental results on the BCI Competition IV dataset II-a and BCI Competition II dataset IV clearly presented the effectiveness of the proposed method outperforming other competing methods in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 108, 2 May 2013, Pages 58–68
نویسندگان
, , ,