کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410515 679149 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
چکیده انگلیسی

Endmembers for the spectral unmixing analysis of hyperspectral images are sets of affinely independent vectors, which define a convex polytope covering the data points that represent the pixel image spectra. Strong lattice independence (SLI) is a property defined in the context of lattice associative memories convergence analysis. Recent results show that SLI implies affine independence, confirming the value of lattice associative memories for the study of endmember induction algorithms. In fact, SLI vector sets can be easily deduced from the vectors composing the lattice auto-associative memories (LAM). However, the number of candidate endmembers found by this algorithm is very large, so that some selection algorithm is needed to obtain the full benefits of the approach. In this paper we explore the unsupervised segmentation of hyperspectral images based on the abundance images computed, first, by an endmember selection algorithm and, second, by a previously proposed heuristically defined algorithm. We find their results comparable on a qualitative basis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 10–12, June 2009, Pages 2111–2120
نویسندگان
, , , ,