کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410610 679154 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
K nearest neighbours with mutual information for simultaneous classification and missing data imputation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
K nearest neighbours with mutual information for simultaneous classification and missing data imputation
چکیده انگلیسی

Missing data is a common drawback in many real-life pattern classification scenarios. One of the most popular solutions is missing data imputation by the KK nearest neighbours (KNN)(KNN) algorithm. In this article, we propose a novel KNNKNN imputation procedure using a feature-weighted distance metric based on mutual information (MI). This method provides a missing data estimation aimed at solving the classification task, i.e., it provides an imputed dataset which is directed toward improving the classification performance. The MI-based distance metric is also used to implement an effective KNNKNN classifier. Experimental results on both artificial and real classification datasets are provided to illustrate the efficiency and the robustness of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 1483–1493
نویسندگان
, , , ,