کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410639 | 679154 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A density-based method for adaptive LDA model selection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Topic models have been successfully used in information classification and retrieval. These models can capture word correlations in a collection of textual documents with a low-dimensional set of multinomial distribution, called “topics”. However, it is important but difficult to select the appropriate number of topics for a specific dataset. In this paper, we study the inherent connection between the best topic structure and the distances among topics in Latent Dirichlet allocation (LDA), and propose a method of adaptively selecting the best LDA model based on density. Experiments show that the proposed method can achieve performance matching the best of LDA without manually tuning the number of topics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 1775–1781
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 1775–1781
نویسندگان
Juan Cao, Tian Xia, Jintao Li, Yongdong Zhang, Sheng Tang,