کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410649 679154 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum spanning tree based one-class classifier
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Minimum spanning tree based one-class classifier
چکیده انگلیسی

In the problem of one-class classification one of the classes, called the target class, has to be distinguished from all other possible objects. These are considered as non-targets. The need for solving such a task arises in many practical applications, e.g. in machine fault detection, face recognition, authorship verification, fraud recognition or person identification based on biometric data.This paper proposes a new one-class classifier, the minimum spanning tree class descriptor (MST_CD). This classifier builds on the structure of the minimum spanning tree constructed on the target training set only. The classification of test objects relies on their distances to the closest edge of that tree, hence the proposed method is an example of a distance-based one-class classifier. Our experiments show that the MST_CD performs especially well in case of small sample size problems and in high-dimensional spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 1859–1869
نویسندگان
, , , ,