کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410668 | 679154 | 2009 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Soft ranking in clustering
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Due to the diffusion of large-dimensional data sets (e.g., in DNA microarray or document organization and retrieval applications), there is a growing interest in clustering methods based on a proximity matrix. These have the advantage of being based on a data structure whose size only depends on cardinality, not dimensionality. In this paper, we propose a clustering technique based on fuzzy ranks. The use of ranks helps to overcome several issues of large-dimensional data sets, whereas the fuzzy formulation is useful in encoding the information contained in the smallest entries of the proximity matrix. Comparative experiments are presented, using several standard hierarchical clustering techniques as a reference.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 2028–2031
Journal: Neurocomputing - Volume 72, Issues 7–9, March 2009, Pages 2028–2031
نویسندگان
Stefano Rovetta, Francesco Masulli, Maurizio Filippone,