کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410732 | 679162 | 2008 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Class structure visualization with semi-supervised growing self-organizing maps
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a semi-supervised learning method for the growing self-organising maps (GSOM) that allows fast visualisation of data class structure on the 2D feature map. Instead of discarding data with missing values, the network can be trained from data with up to 60% of their class labels and 25% of attribute values missing, while able to make class prediction with over 90% accuracy for the benchmark datasets used. The proposed algorithm is compared to three variants of semi-supervised K-means learning on four real-world benchmark datasets and showed comparable performance and better generalisation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3124–3130
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3124–3130
نویسندگان
Arthur Hsu, Saman K. Halgamuge,