کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410775 | 679162 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new local PCA-SOM algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a local PCA-SOM algorithm. The new competition measure is computational efficient, and implicitly incorporates the Mahalanobis distance and the reconstruction error. The matrix inversion or PCA decomposition for each data input is not needed as compared to the previous models. Moreover, the local data distribution is completely stored in the covariance matrix instead of the pre-defined numbers of the principal components. Thus, no priori information of the optimal principal subspace is required. Experiments on both the synthesis data and a pattern learning task are carried out to show the performance of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3544–3552
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3544–3552
نویسندگان
Dong Huang, Zhang Yi, Xiaorong Pu,