کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410812 679166 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monophonic sound source separation with an unsupervised network of spiking neurones
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Monophonic sound source separation with an unsupervised network of spiking neurones
چکیده انگلیسی

We incorporate auditory-based features into an unconventional pattern classification system, consisting of a network of spiking neurones with dynamical and multiplicative synapses. Although the network does not need any training and is autonomous, the analysis is dynamic and capable of extracting multiple features and maps. The neural network allows computing a binary mask that acts as a dynamic switch on a speech vocoder made of an FIR gammatone analysis/synthesis bank of 256 filters. We report experiments on separation of speech from various intruding sounds (siren, telephone bell, speech, etc.) and compare our approach to other techniques by using the log spectral distortion (LSD) metric.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 1–3, December 2007, Pages 109–120
نویسندگان
, ,