کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410830 679166 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A circuit framework for robust manifold learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A circuit framework for robust manifold learning
چکیده انگلیسی

Manifold learning and nonlinear dimensionality reduction addresses the problem of detecting possibly nonlinear structure in high-dimensional data and constructing lower-dimensional configurations representative of this structure. A popular example is the Isomap algorithm which uses local information to approximate geodesic distances and adopts multidimensional scaling to produce lower-dimensional representations. Isomap is accurate on a global scale in contrast to many competing methods which approximate locally. However, a drawback of the Isomap algorithm is that it is topologically instable, that is, incorrectly chosen algorithm parameters or perturbations of data may drastically change the resulting configurations. We propose new methods for more robust approximation of the geodesic distances using a viewpoint of electric circuits. In this way, we achieve both the stability of local methods and the global approximation property of global methods, while compromising with local accuracy. This is demonstrated by a study of the performance of the proposed and competing methods on different data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 1–3, December 2007, Pages 323–332
نویسندگان
, ,