کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410832 679166 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fuzzified neural fuzzy inference network for handling both linguistic and numerical information simultaneously
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A fuzzified neural fuzzy inference network for handling both linguistic and numerical information simultaneously
چکیده انگلیسی

A fuzzified Takagi–Sugeno–Kang (TSK)-type neural fuzzy inference network (FTNFIN) that is capable of handling both linguistic and numerical information simultaneously is proposed in this paper. FTRNFN solves the disadvantages of most existing neural fuzzy systems which can only handle numerical information. The inputs and outputs of FTNFIN may be fuzzy numbers with any shapes or numerical values. Structurally, FTNFIN is a fuzzy network constructed from a series of fuzzy if–then rules with TSK-type consequent parts. The α-cut technique is used in input fuzzification and consequent part computation, which enables the network to simultaneously handle both numerical and linguistic information. There are no rules in FTNFIN initially since they are constructed on-line by concurrent structure and parameter learning. FTNFIN is characterized by small network size and high learning accuracy, and can be applied to linguistic information processing. The network has been applied to the learning of fuzzy if–then rules, a mathematical function with fuzzy inputs and outputs, and truck backing control problem. Good simulation results are achieved from all these applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 1–3, December 2007, Pages 342–352
نویسندگان
, ,