کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410916 679170 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-flat function estimation with a multi-scale support vector regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Non-flat function estimation with a multi-scale support vector regression
چکیده انگلیسی

Estimating the non-flat function which comprises both the steep variations and the smooth variations is a hard problem. The results achieved by the common support vector methods like SVR, LPR and LS-SVM are often unsatisfactory, because they cannot avoid underfitting and overfitting simultaneously. This paper takes this problem as a linear regression in a combined feature space which is implicitly defined by a set of translation invariant kernels with different scales, and proposes a multi-scale support vector regression (MS-SVR) method. MS-SVR performs better than SVR, LPR and LS-SVM in the experiments tried.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 1–3, December 2006, Pages 420–429
نویسندگان
, , ,