کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410916 | 679170 | 2006 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-flat function estimation with a multi-scale support vector regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Estimating the non-flat function which comprises both the steep variations and the smooth variations is a hard problem. The results achieved by the common support vector methods like SVR, LPR and LS-SVM are often unsatisfactory, because they cannot avoid underfitting and overfitting simultaneously. This paper takes this problem as a linear regression in a combined feature space which is implicitly defined by a set of translation invariant kernels with different scales, and proposes a multi-scale support vector regression (MS-SVR) method. MS-SVR performs better than SVR, LPR and LS-SVM in the experiments tried.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 1–3, December 2006, Pages 420–429
Journal: Neurocomputing - Volume 70, Issues 1–3, December 2006, Pages 420–429
نویسندگان
Danian Zheng, Jiaxin Wang, Yannan Zhao,