کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410941 679172 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised learning in second-order neural networks for motion analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Unsupervised learning in second-order neural networks for motion analysis
چکیده انگلیسی

This paper demonstrates how unsupervised learning based on Hebb-like mechanisms is sufficient for training second-order neural networks to perform different types of motion analysis. The paper studies the convergence properties of the network in several conditions, including different levels of noise and motion coherence and different network configurations. We demonstrate the effectiveness of a novel variability dependent learning mechanism, which allows the network to learn under conditions of large feature similarity thresholds, which is crucial for noise robustness. The paper demonstrates the particular relevance of second-order neural networks and therefore correlation based approaches as contributing mechanisms for directional selectivity in the retina.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 6, 15 February 2011, Pages 884–895
نویسندگان
, ,