کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411005 679175 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of two restart algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Analysis of two restart algorithms
چکیده انگلیسی

Since the backpropagation algorithm used for neural network training suffers from a slow convergence and often sticking in local minima, the restart mechanism has been introduced, whose strategy is to cut off the training process and restart it with a fresh initialization when it seems unlikely to converge in a relatively short time. In this paper, we give detailed mathematical analysis on two versions of the restart algorithms. By deriving analytic expressions of the expected convergence time and the success rate, we illustrate why the restart algorithms work well and gain insights into the proper use of restarting. Numerical simulations are performed on the XOR problem, symmetry detection, parity problem and Arabic numeral recognition. We show the effectiveness of the restart algorithms, and compare them with simulated annealing. The analysis can also be applied to many other fields.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2301–2308
نویسندگان
, ,