کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
411012 | 679175 | 2006 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A variational method for learning sparse Bayesian regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, comparing with the Gaussian prior, the Laplacian distribution which is a sparse distribution is employed as the weight prior in the relevance vector machine (RVM) which is a method for learning sparse regression and classification. In order to derive an expectation–maximization (EM) algorithm in closed form for learning the weights, a strict lower bound on the sparse distribution is employed in this paper. This strict lower bound conveniently gives a strict lower bound in Gaussian form for the weight posterior and thus naturally derives an EM algorithm in closed form for learning the weights and the hyperparameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2351–2355
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2351–2355
نویسندگان
Mingjun Zhong,