کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411012 679175 2006 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A variational method for learning sparse Bayesian regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A variational method for learning sparse Bayesian regression
چکیده انگلیسی

In this paper, comparing with the Gaussian prior, the Laplacian distribution which is a sparse distribution is employed as the weight prior in the relevance vector machine (RVM) which is a method for learning sparse regression and classification. In order to derive an expectation–maximization (EM) algorithm in closed form for learning the weights, a strict lower bound on the sparse distribution is employed in this paper. This strict lower bound conveniently gives a strict lower bound in Gaussian form for the weight posterior and thus naturally derives an EM algorithm in closed form for learning the weights and the hyperparameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2351–2355
نویسندگان
,