کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
411018 | 679175 | 2006 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hardware–software partitioning of real-time operating systems using Hopfield neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The hardware–software automated partitioning of a real-time operating system in the system-on-a-chip (SoC-RTOS partitioning) is a NP-complete problem, and a crucial step in the hardware–software co-design of SoC. In this paper, a new model for SoC-RTOS partitioning is introduced, which can help in understanding the essence of the SoC-RTOS partitioning. A discrete Hopfield neural network approach for implementing the SoC-RTOS partitioning is proposed, where a novel energy function, operating equation and coefficients of the neural network are redefined. Simulations are carried out with comparison to other optimization techniques. Experimental results demonstrate the feasibility and effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2379–2384
Journal: Neurocomputing - Volume 69, Issues 16–18, October 2006, Pages 2379–2384
نویسندگان
Bing Guo, Dianhui Wang, Yan Shen, Zhong Liu,