کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411108 679182 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discretized ISO-learning neural network for obstacle avoidance in reactive robot controllers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Discretized ISO-learning neural network for obstacle avoidance in reactive robot controllers
چکیده انگلیسی

Isotropic sequence order learning (ISO-learning) and its variations, input correlation only learning (ICO-learning) and ISO three-factor learning (ISO3-learning) are unsupervised neural algorithms to learn temporal differences. As robotic software operates mainly in discrete time domain, a discretization of ISO-learning is needed to apply classical conditioning to reactive robot controllers.Discretization of ISO-learning is achieved by modifications to original rules: weights sign restriction, to adequate ISO-learning devices outputs to the usually predefined kinds of connections (excitatory/inhibitory) used in neural networks, and decay term in learning rate for weights stabilization. Discrete ISO-learning devices are included into neural networks used to learn simple obstacle avoidance in the reactive control of two real robots.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 4–6, January 2009, Pages 861–870
نویسندگان
, , ,