کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411111 679182 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots
چکیده انگلیسی

In this paper a hybrid approach to the autonomous motion control of robots in cluttered environments with unknown obstacles is introduced. It is shown the efficiency of a hybrid solution by combining the optimization power of evolutionary algorithms and at the same time the efficiency of reinforcement learning in real-time and on-line situations. Experimental results concerning the navigation of a L-shaped robot in a cluttered environment with unknown obstacles are also presented. In such environments there appear real-time and on-line constraints well-suited to RL algorithms and, at the same time, there exists an extremely high dimension of the state space usually unpractical for RL algorithms but well-suited to evolutionary algorithms. The experimental results confirm the validity of the hybrid approach to solve hard real-time, on-line and high dimensional robot motion planning and control problems, where the RL approach shows some difficulties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 4–6, January 2009, Pages 887–894
نویسندگان
, , ,