کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
411111 | 679182 | 2009 | 8 صفحه PDF | دانلود رایگان |
In this paper a hybrid approach to the autonomous motion control of robots in cluttered environments with unknown obstacles is introduced. It is shown the efficiency of a hybrid solution by combining the optimization power of evolutionary algorithms and at the same time the efficiency of reinforcement learning in real-time and on-line situations. Experimental results concerning the navigation of a L-shaped robot in a cluttered environment with unknown obstacles are also presented. In such environments there appear real-time and on-line constraints well-suited to RL algorithms and, at the same time, there exists an extremely high dimension of the state space usually unpractical for RL algorithms but well-suited to evolutionary algorithms. The experimental results confirm the validity of the hybrid approach to solve hard real-time, on-line and high dimensional robot motion planning and control problems, where the RL approach shows some difficulties.
Journal: Neurocomputing - Volume 72, Issues 4–6, January 2009, Pages 887–894