کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411145 679182 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relative transformation-based neighborhood optimization for isometric embedding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Relative transformation-based neighborhood optimization for isometric embedding
چکیده انگلیسی

Isometric embedding approaches can nicely deal with noiseless data sets, but they are topologically unstable when confronted with sparse data sets or with data sets containing a large amount of noise and outliers, as where the neighborhood is critically distorted. Inspired from the cognitive relativity, this paper proposes a relative transformation that can be applied to build the relative space from the original space of data. In relative space, the noise and outliers will become further away from the normal points, while the near points will become relative closer. Accordingly we determine the neighborhood in the relative space for isometric embedding, while the embedding is still performed in the original space. The conducted experiments on both synthetic and real data sets validate the approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 4–6, January 2009, Pages 1205–1213
نویسندگان
,